Stat 534: formulae referenced in lecture, week 8b: Occupancy, N-mixture and Spatial models

Occupancy modeling

• Notation:

- $-X_i$: characteristics of site *i*, may be a vector
- $-Y_i$: species is seen at site i, 0 = not seen, 1 = seen
- Z_i : species occurs at site *i*, 0 = doesn't occur there, 1 = does
- The model:

$$Z_i \sim \operatorname{Bern}(\pi_i)$$

$$\pi_i = f(\beta, X_i)$$

$$Y_i \mid Z_i \sim \operatorname{Bern}(Z_i \times g(\alpha, X_i))$$

N-mixture models:

- Estimate N and p without marking animals
- Notation:
 - N_i : # individuals at site i
 - -S sites, each sampled T times
 - n_{ij} : # individuals in j sample at site i
 - -p: constant, or function of known covariates
- The model (Royle 2004; Kéry, Royle and Schmid, 2005)

$$n_{ij} \sim \operatorname{Bin}(N_i, p)$$

 $N_i \sim f(\theta)$

• log-likelihood:

$$\ln \mathcal{L}(\theta, p \mid \{n_{ij}\}) = \prod_{i=1}^{S} \left\{ \sum_{N_i = k_i}^{\infty} \left(\prod_{i=1}^{T} \operatorname{Bin}(n_{ij} \mid N_i, p) \right) f(N_i \mid \theta) \right\}$$

- Why multiple T > 1 times are needed:
 - $T = 1: N_i \sim \text{Poiss}(\lambda_i), n_i \mid N_i \sim \text{Bin}(N_i, p) \Rightarrow n_i \sim \text{Poiss}(\lambda_i p)$
 - Can't estimate λ_i or N_i , only relative abundance: λ_i/λ_i
 - $-T = 2: n_{ij} \sim \text{Poiss}(\lambda_i p).$
 - $-n_{i1}$ and n_{i2} are correlated
 - That correlation $\Rightarrow \hat{\lambda}_i$
 - But inference from correlations is fragile

Distance sampling: just pictures in hand-written notes

Spatial capture-recapture:

- Notation:
 - K: # capture occasions, J: # traps, N: # individuals
 - $-Y_{ij}$: # times animal *i* caught in trap $j \sim \text{Bin}(K, P_{ij})$
 - p_{ij} : P[animal *i* caught in trap *j*]
 - $-S_i$: activity center for animal i
 - $-X_j$: location of trap j
 - $-\alpha$: parameters of home range / activity distributions
- The model, omitting some details
 - p_{ij} depends on home-range "shape" and distance between S_i and X_j
 - Gaussian home ranges: $p_{ij} = \alpha_0 \exp(-\alpha_1 ||S_i - X_j||)$
 - * α_0 : capture probability when trap at activity center
 - * α_1 : describes "spread" of home range
 - Big assumption: home range is isotropic only distance matters, not direction
 - For animal i:

$$f(Y_{ij} \mid S_i) = \prod_{traps} \operatorname{Bin}(k, p_{ij})$$

- Want $f(Y_{ij})$:

$$f(Y_{ij}) = \int f(Y_{ij} \mid S_i) f(S_i) dS_i$$

- requires a distribution for activity centers, $f(S_i)$
 - * Usual assumption: activity centers equally likely throughout area A

$$* f(S_i) = 1/A$$

- * integral usually unwieldy
- * approximated by numerical approximation using a grid of possible activity centers
- Really nice thing: get estimate of density: \hat{N}/A